Passive Terminal Decelerator

Blue Origin Industry-Sponsored Capstone Department of Mechanical Engineering at the University of Washington, Seattle

Introduction/Motivation

Background:

- The Blue Origin New Shepard Crew Capsule lands in the desert with redundant safety systems: parachutes, active deceleration, and passive deceleration.
- To minimize astronaut sensed acceleration, an aluminum Passive Terminal Decelerator (PTD) absorbs any remaining impact energy.
- The PTD is replaced every flight. Reusing the PTD would minimize waste and help lower overall launch expenses.

PROBLEM STATEMENT

Blue Origin seeks to understand how the PTD performs after experiencing partial damage and to assess reusability.

Testing Criteria:

- Record acceleration data for impact at low and high speeds
- Apply damage to core and characterize compressive behavior change.
- Use FEM to model the behavior of the PTD

Figure 1: Side View of the PTD

Figure 2: Examples of aluminum honeycomb crushables

Testing/Data Processing

Compression Testing:

We used an Instron Load Frame to verify the mechanical properties of the PTD and to determine the energy absorbed by the material.

Figure 3: Sample in **Instron Load Frame**

Impact/Compression After Impact Testing:

We designed and built an impact frame to compare mechanical behavior after a dynamic impact load with the undamaged quasi-static behavior.

Figure 5: Sample on Impact Frame

Energy Absorbed Comparison:

Test Type	Crush Test Energy Absorbed	Percent Deformation
Crush Test	100%	80%
Impact	4.1%	7.4%
Post Impact Crush Test	98.2%	72.6%

Figure 4: Stress vs Strain Plot of Five Samples

Figure 6: Stress vs. Strain from post-impact compression testing

Results/Validation

$$E = A \cdot \int_{d}^{0.8*(t_2+t_2)} d$$

E = Energycore crush strength A = Area - **σ**1

Figure 8: Comparison of FEA vs **Figure 7: FEA Simulation** Impact vs Crush testing data of PTD Sample

Conclusion & Next Steps:

- it to the crew capsule.

Acknowledgements:

A big thank you to Dr. Sayem Bin Abdullah, Prof. Junlan Wang, Prof. Eli Patten, Veasna Thon, Eamon McQuaide, and Bill Kuykendall of the UW Seattle ME Department. A thank you as well to Connor Caler, Keith Anderson, Sara Olsen, and the rest of the Blue Origin team!

Seattle

Harry-Turner Equation to Predict Energy Absorption:

 $\Delta \sigma = \sigma 2$

• Data collected from this study is scalable to other crushables used at Blue Origin. Our data suggests that at a ratio of 45-Ibs to 25 square inches, the PTD can be reused once after being impacted at nominal speed with uniform crushing before the PTD will not absorb energy; it will instead transfer

• The final determination for reusability will be left to the discretion of the client, as that is proprietary information.

Sources:

Mechanical Engineering Capstone Exposition June 3, 2025, Husky Union Building, University of Washington,